
Installing, Uninstalling, and Starting the Software Applications a

PLEORA TECHNOLOGIES INC.

eBUS SDK .NET API
eBUS SDK Version 6.2

Quick Start Guide

Copyright © 2021 Pleora Technologies Inc.

These products are not intended for use in life support appliances, devices, or systems where malfunction of these products can
reasonably be expected to result in personal injury. Pleora Technologies Inc. (Pleora) customers using or selling these products for
use in such applications do so at their own risk and agree to indemnify Pleora for any damages resulting from such improper use or
sale.

Trademarks

CoreGEV, PureGEV, eBUS, iPORT, vDisplay, AutoGEV, AutoGen, and all product logos are trademarks of Pleora Technologies.
Third party copyrights and trademarks are the property of their respective owners.

Notice of Rights

All information provided in this manual is believed to be accurate and reliable. No responsibility is assumed by Pleora for its use.
Pleora reserves the right to make changes to this information without notice. Redistribution of this manual in whole or in part, by
any means, is prohibited without obtaining prior permission from Pleora.

Document Number

EX001-017-0007,Version 14.0 3/4/21

Table of Contents

What’s New In Version 6.2? . iii

Enhanced 3D Linescan Support for eBUS Tx-Based Applications Targeting Embedded Devices. . .iii
Ubuntu 20.04 LTS (64-bit) Support .iii
Installation Package Updates . iv
Microsoft Visual Studio 2019 Support. iv
eBUS Daemon Removal on Linux Operating System . iv
Support for Jetpack 4.3 . v

About this Guide . 1
What this Guide Provides . 2
Related Documents . 2

Introducing the eBUS SDK .NET API. 3
About the eBUS SDK .NET API . 4
eBUS SDK Licenses . 5

Installing the eBUS SDK . 7
System Requirements . 8
Installing the eBUS SDK . 8

Using the Sample Code. 9
Overview: System Components . 10
Description of Samples . 11
Using H.264 Encoding . 13

Code Walkthrough: Acquiring Images with the eBUS SDK. 15
Accessing the Sample Code . 16
Classes Used in the PvStreamSample . 16
Namespaces . 17
Timer. 17
FormClosing Event . 17
Step1Connecting Method . 18
Step2Configuring Method . 20
Step3StartingStream Method . 22
Step5StoppingStream Method . 25
Step6Disconnecting Method . 26

Troubleshooting. 27
Troubleshooting Tips. 27

Reference: C++ eBUS SDK and .NET SDK Comparison . 31
Types . 32
Properties . 32
Enumeration Types . 33
Error Management. 33
i

Enumerators. 35
Collections . 35
Callbacks . 36

Technical Support . 37
ii eBUS SDK .NET API Quick Start Guide

What’s New?

What’s New In Version 6.2?
eBUS SDK is updated with the following new features and enhancements in Release 6.2.

• “Enhanced 3D Linescan Support for eBUS Tx-Based Applications Targeting Embedded Devices”

• “Ubuntu 20.04 LTS (64-bit) Support”

• “Installation Package Updates”

• “Microsoft Visual Studio 2019 Support”

• “eBUS Daemon Removal on Linux Operating System”

• “Support for Jetpack 4.3”

Enhanced 3D Linescan Support for eBUS Tx-Based
Applications Targeting Embedded Devices

eBUS SDK is improved in Release 6.2 to reduce CPU consumption, thereby enabling additional on-
board processing capabilities to be leveraged for eBUS Tx applications deployed on embedded devices for
3D Linescan applications. These enhancements ensure that sufficient resources are available on the
embedded system for accurate triggering in Linescan applications, as well as ensuring that all 3D data
analysis (for example, point cloud calculation) can be performed on the embedded device.

Ubuntu 20.04 LTS (64-bit) Support

eBUS SDK introduces support for Ubuntu 20.04 LTS (64-bit) on x86 platforms in Release 6.2.

You must install the following library before installing eBUS SDK on Ubuntu 20.04:

sudo apt-get install libavcodec58
What’s New In Version 6.2? iii

Installation Package Updates

eBUS SDK Release 6.2 updates the naming for eBUS SDK installation packages for the following
platforms:

• Ubuntu 14.04 (32-bit and 64-bit)

• Ubuntu 16.04 (32-bit and 64-bit)

• Ubuntu 18.04 (64-bit)

• RHEL and CentOS 7

Package names are changed to add the Ubuntu version, for example:

eBUS_SDK_Ubuntu-14.04-i686-6.2.<sub-minor version>-<build number>

The RHEL and CentOS 7 installation package is renamed to remove the OS version. In this instance,
“7” is removed and the package is renamed as follows:

eBUS_SDK_RHEL-CentOS-x86_64-6.2.<sub-minor version>-<build number>

Installation prerequisites have also been added for the following platforms in eBUS SDK Release 6.2:

• Ubuntu 14.04 (32-bit and 64-bit)

• Ubuntu 16.04 (32-bit and 64-bit)

• Ubuntu 18.04 (64-bit)

• RHEL and CentOS 7

• ARM64 (aarch64) on NVIDIA Jetson platforms

See the “Installing eBUS SDK for Linux” section in the eBUS SDK for Linux Quick Start Guide for details.

Microsoft Visual Studio 2019 Support

eBUS SDK Release 6.2 adds Visual Studio 2019 to the list of supported integrated development
environments for Windows application development.

eBUS Daemon Removal on Linux Operating System

In previous eBUS SDK versions (version 4.0 to 6.1) stopping and restarting the eBUS Daemon was
required when activating a license on a Linux OS. eBUS SDK is enhanced in Release 6.2 to remove the
eBUS Daemon for the Linux operating system. As of eBUS SDK Release 6.2, you must simply close and
re-launch your application after applying a license on the Linux OS for the license to be activated.

Upgrading directly to the new eBUS SDK software for these platforms is not supported. Pleora recommends
uninstalling the previous eBUS SDK before installing the new software package. Also, note that the
installation path is changed to include the distribution targeted.
iv eBUS SDK .NET API Quick Start Guide

Support for Jetpack 4.3

eBUS SDK Release 6.2 introduces support for Jetpack 4.3 on Jetson platforms.
vWhat’s New In Version 6.2?

vi eBUS SDK .NET API Quick Start Guide

Chapter 1eBUS SDK .NET API

About this Guide
This chapter describes the purpose and scope of this guide, and provides a list of complementary guides.

The following topics are covered in this chapter:

• “What this Guide Provides” on page 2

• “Related Documents” on page 2
About this Guide 1

What this Guide Provides

This guide provides you with the information you need to install the eBUS SDK (which lets you use the
eBUS SDK .NET API) and an overview of the system requirements.

You can use the sample applications to see how the API classes and methods work together for device
configuration and control, unicast and multicast communication, image and data acquisition, image
display, and diagnostics. You can also use the sample code to verify that your system is working properly
(that is, determine whether there is a problem with your code or your equipment).

For troubleshooting information and technical support contact information for Pleora Technologies, see
the last few chapters of this guide.

Related Documents

The eBUS SDK .NET API Quick Start Guide is complemented by the following Pleora Technologies
documents, which are available on the Pleora Technologies Support Center (supportcenter.pleora.com):

• eBUS Player Quick Start Guide

• eBUS Player User Guide

• eBUS SDK .NET API Help File

• eBUS SDK for Linux Quick Start Guide

• eBUS SDK Licensing Overview Knowledge Base Article

• Configuring Your Computer and Network Adapters for Best Performance Knowledge Base Article
2 eBUS SDK .NET API Quick Start Guide

https://supportcenter.pleora.com

Chapter 2

Introducing the eBUS SDK .NET API
This chapter describes the eBUS SDK .NET API, which is a feature of the eBUS SDK that allows you to
develop custom vision systems to acquire and transmit images and data using C#.NET or Visual Basic®
.NET (VB.NET).

The following topics are covered in this chapter:

• “About the eBUS SDK .NET API” on page 4

• “eBUS SDK Licenses” on page 5
Introducing the eBUS SDK .NET API 3

About the eBUS SDK .NET API

eBUS SDK is built on a single API to receive video over GigE, 10 GigE, and USB 3.0 that is portable
across Windows, Linux, and macOS operating systems. With a Developer Seat License, designers can
develop production-ready software applications in the same environment as their end-users, and quickly
and easily modify applications for different media, while avoiding supporting multiple APIs from various
vendors. Compared to camera vendor provided SDKs, eBUS frees developers from being tied to a specific
camera, and instead they can choose the device that is best for the application.

eBUS Rx for Host Applications

eBUS Rx manages high-speed reception of images or data into buffers for hand-off to the end application
for further analysis. Developers can write applications that run on a host computer to seamlessly control
and configure an unlimited number of GigE Vision or USB3 Vision and GenICam compliant sensors.

The eBUS Universal Pro driver reduces CPU usage when receiving images or data, leaving more
processing power for analysis and inspection applications while helping meet latency and throughput
requirements for real-time applications. The eBUS Universal Pro driver is easily integrated into third-
party processing software to bring performance advantages to end-user applications.
4 eBUS SDK .NET API Quick Start Guide

eBUS SDK Licenses

Some components of the eBUS SDK require a Pleora license to remove transmit and recieve limitations.

eBUS Player, Sample Applications, and Software Applications Created
with the eBUS SDK

When a license is not present and you are receiving images from third-party transmitter technology, an
embossed Pleora watermark will appear on the images that you receive. In addition, you will not be able
to receive the GenICam raw data payload type from the transmitting device.

GigE Vision Devices Created with the eBUS Tx API

When a license is not present, GigE Vision receivers will be disconnected from the GigE Vision device
after 15 minutes. In addition, your device will report hard-coded device information (such as the device
model name), instead of your organization’s customized information.

Activating an eBUS SDK License

For detailed information about licensing, including details on activating a license, see the eBUS SDK
Licensing Overview Knowledge Base Article available on the Pleora Technologies Support Center at
supportcenter.pleora.com.

License Not Required eBUS Rx License
- Removes the watermark
- Lets you receive GenICam
 raw data payload type

Non-Pleora Transmitter
Technology

Pleora Transmitter
Technology

Receiving Application
eBUS Player, Pleora sample applications,

applications developed with the eBUS SDK
5Introducing the eBUS SDK .NET API

https://supportcenter.pleora.com

Chapter 3

Installing the eBUS SDK
The eBUS SDK .NET API is installed on your computer during the installation of the eBUS SDK.

The following topics are covered in this chapter:

• “System Requirements” on page 8

• “Installing the eBUS SDK” on page 8

The instructions in this chapter are based on the Windows 7 operating system. The steps may vary
depending on your computer’s operating system.
Installing the eBUS SDK 7

System Requirements

Ensure the computer on which you install the eBUS SDK meets the following recommended
requirements:

• At least one Gigabit Ethernet NIC (if you are using GigE Vision devices) or at least one USB 3.0
port (if you are using USB3 Vision devices).

• An appropriate compiler or integrated development environment (IDE):

• Visual Studio 2019, 2017, 2015, 2013, 2012, and 2010.

One of the following operating systems:

• Microsoft Windows 10, 32-bit or 64-bit

• Microsoft Windows 8.1, 32-bit or 64-bit

• Microsoft Windows 7 with Service Pack 1 (or later), 32-bit or 64-bit

Installing the eBUS SDK

Because the eBUS SDK .NET API is part of the eBUS SDK, it is included in the eBUS SDK installation
package. You can download the eBUS SDK from the Pleora Support Center at supportcenter.pleora.com.

For supported USB 3.0 host controller chipsets, consult the eBUS SDK Release Notes, available on the
Pleora Support Center.

Depending on the incoming and outgoing bandwidth requirements, as well as the performance of each NIC,
you may require multiple NICs. For example, even though Gigabit Ethernet is full duplex (that is, it manage
1 Gbps incoming and 1 Gbps outgoing), the computer’s PCIe bus may not have enough bandwidth to
support this. This means that while your NIC can — in theory — accept four cameras at 200 Mbps each
incoming, and output a 750 Mbps stream on a single NIC, the NIC you choose may not support this level
of performance.
8 eBUS SDK .NET API Quick Start Guide

https://supportcenter.pleora.com

Chapter 4

Using the Sample Code
To illustrate how you can use the eBUS SDK .NET API to acquire and transmit images, the SDK includes
sample code that you can use. This chapter provides a description of the sample code and provides general
information about accessing the code to create sample applications.

Most of the code samples are UI-based. However, it is possible to perform any activity demonstrated in
the samples programmatically.

The following topics are covered in this chapter:

• “Overview: System Components” on page 10

• “Description of Samples” on page 11
Using the Sample Code 9

Overview: System Components

The following illustration shows the components that are used, illustrating the relationship between the
eBUS SDK, GigE Vision receivers, GigE Vision transmitters, and USB3 Vision transmitters.

GigE Vision Transmitter
Image source GigE Vision Receiver

Video receiver and display

Video
Network

Management
Entity

Configuring

Image Processing and
Display Applications

Receiving image stream with

Software-Based
Video Processing Unit

Receiving images with the
eBUS SDK, modifying them, and

Ethernet
Network

 retransmitting them using
the eBUS SDK the eBUS SDK

and monitoring
devices using
the eBUS SDK

USB3 Vision Transmitter
Image source
10 eBUS SDK .NET API Quick Start Guide

Description of Samples

The following samples are available as C# samples in this release. Some samples are also available as
VB.NET samples.

Table 1: Sample Code

Sample code Function
Type of application that
is created

eBUS Demo Application

SimpleApplication,
SimpleApplicationVB

For developers using .NET or Visual Basic.NET, this
sample showcases some of the functionality of the
eBUS Rx SDK, which is used to detect, connect, and
configure GigE Vision and USB3 Vision devices, and
display and streaming images.

UI-based: C# .NET, and
VB .NET

Getting Started

PvStreamSample This “Hello World” sample shows you how to connect to
a GigE Vision or USB3 Vision device, receive an image
stream, stop streaming, and disconnect from the
device.

• Command line

Image Streaming

PvPipelineSample This sample extends the "Hello World" PvStreamSample
by showing how buffers are managed internally by the
PvPipeline class. This removes some of the complexity
of buffer management from the application when
compared to the PvStream sample.

• Command line

DualSource This GUI-based sample for GigE Vision devices extends
the MultiSource sample by allowing you to view image
streams from a GigE Vision device that has two
streaming sources.

• UI-based

ImageProcessing This sample illustrates how to acquire an image and
process it using an external buffer to interface with a
non-Pleora library. This is useful when you want to
interface the eBUS SDK to popular third-party SDKs for
image processing or machine learning, such as OpenCV.

• Command line

MulticastMaster
for GigE Vision devices

This sample shows how to connect to a GigE Vision
device and initiate a multicast stream to allow multiple
slave devices to receive and process the image stream
simultaneously.

This sample is used in conjunction with the
MulticastSlave sample, which listens to the multicast
stream.

• Command line
11Using the Sample Code

MulticastSlave
for GigE Vision devices

This sample shows how to configure the eBUS SDK to
receive an image stream from a GigE Vision device that
is configured for multicast mode.

This sample is used in conjunction with the
MulticastMaster sample, which initiates the multicast
stream.

• Command line

DirectShowDisplay This sample shows how to integrate the eBUS SDK
DirectShow source filter and how to build a filter graph
that receives images from a GigE Vision or USB3 Vision
device. This functionality is recommended for existing
DirectShow applications to enable quick integration of
GigE Vision or USB3 Vision devices.

Note: This sample assumes good knowledge of
DirectShow and COM.

• UI based

Configuration and Event Monitoring

GenICamParameters This sample shows how to enumerate and display the
GenICam features and settings of a GenICam-
compatible device by discovering and accessing the
features of the device's node map. The node map is built
programmatically from the device’s GenICam XML file.

• Command line

For developers who have worked with earlier releases of the eBUS SDK, please note that the Video Server
API and the following sample applications are not recommended for new designs (NRND):
TransmitTestPattern, and TransmitTiledImages.

Table 1: Sample Code (Continued)

Sample code Function
Type of application that
is created
12 eBUS SDK .NET API Quick Start Guide

Using H.264 Encoding

You can use eBUS Player (C++ sample application) to encode images in H.264 video format and save
them on your computer in an MP4 file.

If you are interested in adding H.264 encoding to your application, you can refer to the
Mp4WriterWin32 class in the eBUS Player C++ sample application for an example. At this time, Pleora
does not supply sample code to save H.264 video in an mp4 file for .NET applications. However you can
use the mp4writerwin32 C++ class as a template to migrate the code to .NET.

This feature can be used when you start eBUS Player from the Windows Start menu. However, it is
important to note that if you are using the eBUS Player sample application, this feature is not enabled by
default.

Video Encoder Information

When saving H.264 video in an MP4 container, the eBUS SDK uses the Microsoft Media Foundation
H.264 video encoder. The default video encoder settings are used, with the exception of the frame rate
and average bit rate. The video is encoded at 30 frames per second. And the average bit rate is the value
set by the PvMp4Writer.AvgBitrate property.
13Using the Sample Code

14 eBUS SDK .NET API Quick Start Guide

Chapter 5

Code Walkthrough: Acquiring Images with the eBUS
SDK

This section walks you through the code contained in PvStreamSample. This sample illustrates how to
detect available devices, connect to a device, and start an image stream.

The following topics are covered in this chapter:

• “Accessing the Sample Code” on page 16

• “Classes Used in the PvStreamSample” on page 16

• “Namespaces” on page 17

• “Timer” on page 17

• “FormClosing Event” on page 17

• “Step1Connecting Method” on page 18

• “Step2Configuring Method” on page 20

• “Step3StartingStream Method” on page 22

• “Step5StoppingStream Method” on page 25

• “Step6Disconnecting Method” on page 26
Code Walkthrough: Acquiring Images with the eBUS SDK 15

Accessing the Sample Code

The sample code is available in the following location: C:\Program Files\Pleora Technologies Inc\eBUS
SDK\Samples

Required Items

The sample code requires that you have a GigE Vision device connected to a NIC on your computer or
a USB3 Vision device connected to a USB 3.0 port on your computer.

Classes Used in the PvStreamSample

PvStreamSample uses the classes listed in the following table.

You must copy the sample code to a location on your computer (such as your C: drive) before you open the
sample code in your IDE. Access to these directories is restricted.

Camera
GigE Vision or USB3 Vision

Ethernet or USB3 3.0

Development Computer

Table 2: Classes Used in the Sample

Class Description

PvDeviceInfo Used to access information about a device, such as its manufacturer information, protocol
(either GigE Vision or USB3 Vision), serial number, ID, and version.

PvDevice Used to connect to and control a device and initiate the image stream. Protocol and interface-
specific functionality is available in two subclasses, PvDeviceGEV and PvDeviceU3V.

PvStream Provides access to the image stream. Like PvDevice, there are protocol and interface-specific
subclasses, PvStreamGEV and PvStreamU3V.
16 eBUS SDK .NET API Quick Start Guide

Namespaces

The PvDotNet and PvGUIDotNet namespaces are required for applications that use the eBUS SDK. If you
are developing an application that does not use GUI components, you can exclude PvGUIDotNet.

When you include PvGUIDotNet, eBUS SDK GUI components are available to drag from the Visual
Studio toolbox into your application.

To add the display, browser, and status controls to the Visual Studio toolbox

1. In Visual Studio, right-click the Toolbox and then click Choose Items.

2. On the .NET Framework Components tab, select the following controls: PvDisplayControl,
PvGenBrowserControl, and PvStatusControl.

Timer

The sample uses a timer to sequence through the methods of the sample. Every time that the timer ticks
(every 1 second), the sample executes the next method. The use of the timer helps demonstrate concepts
within the eBUS SDK, and you do not need to include it in your application.

The timer is only enabled when one of the methods completes.

FormClosing Event

On form closing, if a stream has been started, the stream stops. If there is a connection with the device,
the application disconnects from the device.

PvBuffer Represents a block of data from the device, such as an image.

PvResult A simple class that represents the result of various eBUS SDK methods.

Table 2: Classes Used in the Sample

Class Description

C#

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Threading;
using PvDotNet;
using PvGUIDotNet;
17Code Walkthrough: Acquiring Images with the eBUS SDK

Step1Connecting Method

Step1Connecting calls methods that allow the user to select a device from a dialog box, connect to a
device, open the image stream, and set the browser parameters.

The first section of the sample provides the user with a way to see all of the available GigE Vision and
USB3 Vision devices, and select one. A device finder dialog box presents all of the devices that are
available to the user. If the user selects a GigE Vision or USB3 Vision device and clicks the OK button,
then we proceed to connect to the device and open the image stream, as discussed in the next paragraph.

Next, the sample connects to the selected device. GigE Vision and USB3 Vision devices are represented
by different classes (PvDeviceGEV and PvDeviceU3V) and they share a parent class (PvDevice) that abstracts
most of the differences. When possible, you should use a PvDevice object instead of a protocol-specific
object to reduce code duplication. To create a PvDevice object from a PvDeviceInfo object without
explicitly checking the protocol of the device, use the CreateAndConnect static factory method from the
PvDevice class, which abstracts the device type.

When the sample initiates the image stream, it uses a static factory method (CreateAndOpen) to create and
open the PvStream object, which allows your application to support both GigE Vision and USB3 Vision
devices.

This sample demonstrates the display of available devices to the user, using a device finder window.
Another option is to select a device programmatically, using the PvSystem class to iterate through all
PvInterface objects (network adapters or USB host controllers) and within those, iterate through
PvDeviceInfo objects. Alternatively, you can hard-code the device identifier (the IP address, MAC address,
or USB GUID) or read it from a configuration file.

C#

 private void Step1Connecting()
 {
 oneLabel.Enabled = true;

 // Pop device finder, let user select a device.
 PvDeviceFinderForm lForm = new PvDeviceFinderForm();
 if (lForm.ShowDialog() == DialogResult.OK)
 {
 try
 {
 PvDeviceInfo lDeviceInfo = lForm.Selected;

If it is not important for your application to support both GigE Vision and USB3 Vision devices (for example,
your organization only uses devices of a particular type), you can call the GetType method of the
PvDeviceInfo object (aDeviceInfo) to determine whether the device is GigE Vision or USB3 Vision. Then
you could create a new PvDeviceGEV or PvDeviceU3V object and call the Connect method directly.
18 eBUS SDK .NET API Quick Start Guide

Finally, it retrieves a reference to an array of GenICam features that represent the stream statistics and
parameters and stores them in the UI element on the form.

The eBUS SDK .NET API uses exceptions for error management. For more information, see “Error
Management” on page 33.

C#

 // Connect device.
 mDevice = PvDevice.CreateAndConnect(lDeviceInfo);

 // Open stream.
 mStream = PvStream.CreateAndOpen(lDeviceInfo.ConnectionID);
 if (mStream == null)
 {
 MessageBox.Show("Unable to open stream.", Text);
 return;
 }

 // Set browser parameters.
 browser.GenParameterArray = mStream.Parameters;
 }
 catch (PvException ex)
 {
 Step6Disconnecting();
 MessageBox.Show(ex.Message, Text, MessageBoxButtons.OK, MessageBoxIcon.Error);
 Close();
 }
 }
 else
 {
 Close();
 }
 }
19Code Walkthrough: Acquiring Images with the eBUS SDK

Step2Configuring Method

For most of this sample, there is no need to distinguish between GigE Vision or USB3 Vision devices, as
the eBUS SDK classes abstract the device type. However, when using a GigE Vision device, you must set
a destination IP address for the image stream. In this sample, the destination is automatically set to be the
IP address of the network interface card on the PC used to interface with the device (which is the most
common configuration).

Also, for optimal performance over Gigabit Ethernet, it is necessary to determine the largest possible
packet size for the connection (ideally the link would use jumbo frames — typically about 9000 bytes).
This is the only place in the application where we check the device type.

First, we use a dynamic cast to determine if the PvDevice object represents a GigE Vision device. If it is a
GigE Vision device, we do the required configuration. If it is a USB3 Vision device, no stream
configuration is required for this sample.

Next, the sample allocates memory for the received images.

PvStream contains two buffer queues: an “input” queue and an “output” queue. First, we add PvBuffer
objects to the input queue of the PvStream object by calling PvStream.QueueBuffer once per buffer. As
images are received, PvStream populates the PvBuffers with images and moves them from the input
queue to the output queue. The populated PvBuffers are removed from the output queue by the
application (using PvStream.RetrieveBuffer), processed, and returned to the input queue (using
PvStream.QueueBuffer). The queuing and retrieval of buffers is managed by a worker thread that executes

Jumbo frames are configured on your computer’s network interface card (NIC). For more information, see
the operating system documentation or the Configuring Your Computer and Network Adapters for Best
Performance Knowledge Base Article, available on the Pleora Support Center at supportcenter.pleora.com.

When developing your application, you may prefer to hard-code the packet size based on your target
system, instead of using PvDeviceGEV.NegotiatePacketSize.

C#

 private void Step2Configuring()
 {
 oneLabel.Enabled = false;
 twoLabel.Enabled = true;
 try
 {
 // Perform GigE Vision only configuration
 PvDeviceGEV lDGEV = mDevice as PvDeviceGEV;
 if (lDGEV != null)
 {
 // Negotiate packet size
 lDGEV.NegotiatePacketSize();

 // Set stream destination.
 PvStreamGEV lSGEV = mStream as PvStreamGEV;
 lDGEV.SetStreamDestination(lSGEV.LocalIPAddress, lSGEV.LocalPort);
 }
20 eBUS SDK .NET API Quick Start Guide

https://supportcenter.pleora.com

the ThreadProc method, which appears near the end of the sample code and is described in “The Worker
Thread” on page 23.

The memory allocated for PvBuffer objects is based on the resolution of the image and the bit depth of
the pixels (the payload) retrieved from the device using PvDevice.GetPayloadSize. The device returns
the number of bytes required to hold one buffer, based on the configuration of the device.

When designing applications that deal with higher frame rate streams or that run on slower platforms, it
may be necessary to increase the BUFFER_COUNT (to give you some margin for performance dips when you
cannot process buffers fast enough for a short period). This allows the application to avoid a scenario
where all buffers are in the output queue awaiting retrieval, and none are available in the input queue to
store newly-received images.

C#

// Read payload size, preallocate buffers of the pipeline.
Int64 lPayloadSize = mDevice.PayloadSize;

// Get minimum buffer count, creates and allocates buffer.
UInt32 lBufferCount = (mStream.QueuedBufferMaximum < cBufferCount) ?

mStream.QueuedBufferMaximum : cBufferCount;
PvBuffer[] lBuffers = new PvBuffer[lBufferCount];
for (UInt32 i = 0; i < lBufferCount; i++)
{

lBuffers[i] = new PvBuffer();
lBuffers[i].Alloc((UInt32)lPayloadSize);

}

// Queue all buffers in the stream.
for (UInt32 i = 0; i < lBufferCount; i++)
{

mStream.QueueBuffer(lBuffers[i]);
}

}
...
21Code Walkthrough: Acquiring Images with the eBUS SDK

Step3StartingStream Method

In this method, we acquire images from the device.

Step3StartingStream creates a new thread, which executes the ThreadProc method that manages the
queueing and retrieval of buffers. While it is not necessary to queue and retrieve buffers on a separate
thread, we use this approach in the sample to allow the user interface to be updated independently of
buffer management.

To start the image stream, we enable streaming on the device (PvDevice.StreamEnable) and execute the
GenICam AcquisitionStart command (lStart).

For GigE Vision devices, StreamEnable sets the TLParamsLocked feature, which prevents changes to the
streaming related parameters during image acquisition.

For USB3 Vision devices, it sets the TLParamsLocked feature, configures the USB driver for streaming, and
sets the stream enable bit on the device.

C#

 private void Step3StartingStream()
 {
 twoLabel.Enabled = false;
 threeLabel.Enabled = true;

 // Start display thread.
 mThread = new Thread(new ParameterizedThreadStart(ThreadProc));
 MainForm lP1 = this;
 object[] lParameters = new object[] { lP1 };
 mIsStopping = false;
 mThread.Start(lParameters);

 // Enables streaming before sending the AcquisitionStart command.
 mDevice.StreamEnable();

 // Start acquisition on the device
 mDevice.Parameters.ExecuteCommand("AcquisitionStart");
 }
22 eBUS SDK .NET API Quick Start Guide

The Worker Thread

As the acquisition thread runs, we retrieve the first PvBuffer, and check the results. When we retrieve the
PvBuffer object, we remove it temporarily from the PvStream output buffer queue and process it. When
processing is complete, we add the PvBuffer object back into the input buffer queue.

To verify that a buffer has been retrieved successfully from the stream object and to verify the acquisition
of an image, we examine the two values supplied by RetrieveBuffer. First, we check the value of a
PvResult object (lResult) to determine that a buffer has been retrieved. If a buffer has been retrieved,
then it checks the value of the PvResult object (lOperationResult) to verify the acquisition operation (for
example, it checks if the operation timed out, had too many resends, or was aborted.)

C#

 private static void ThreadProc(object aParameters)
 {
 object[] lParameters = (object[])aParameters;
 MainForm lThis = (MainForm)lParameters[0];

 for (;;)
 {
 if (lThis.mIsStopping)
 {
 // Signaled to terminate thread, return.
 return;
 }

 PvBuffer lBuffer = null;
 PvResult lOperationResult = new PvResult(PvResultCode.OK);

 // Retrieve next buffer from acquisition pipeline
 PvResult lResult = lThis.mStream.RetrieveBuffer(ref lBuffer, ref lOperationResult, 100);
 if (lResult.IsOK)
 {
 // Operation result of buffer is OK, display.
 if (lOperationResult.IsOK)
 {
 lThis.displayControl.Display(lBuffer);
 }

 // We have an image - do some processing (...) and VERY IMPORTANT,
 // re-queue the buffer in the stream object.
 lThis.mStream.QueueBuffer(lBuffer);
 }
 }
 }
23Code Walkthrough: Acquiring Images with the eBUS SDK

Now that we have obtained a PvBuffer with an image, we display the image in the application. This is
also the point at which your application would typically process the buffer. After we display the image,
we requeue the PvBuffer object in the input queue by calling PvStream.QueueBuffer.

If lOperationalResult returns something other than OK, a PvBuffer object has been retrieved, but it is
not valid (for example, only part of the image could be retrieved or a timeout occurred). In this case, we
also re-queue the PvBuffer object back to the PvStream object so it can be used again.

If lResult returns something other than OK, a PvBuffer object was not retrieved and therefore there is no
PvBuffer to requeue.

C#

 private void Step5StoppingStream()
 {
 stopButton.Enabled = false;
 fourLabel.Enabled = false;
 fiveLabel.Enabled = true;

 try
 {
 PvBuffer lBuffer = null;
 PvResult lOperationResult = new PvResult(PvResultCode.OK);
 PvResult lResult = new PvResult(PvResultCode.OK);
...
24 eBUS SDK .NET API Quick Start Guide

Step5StoppingStream Method

The remainder of the sample is used to stop acquisition and clean up resources when the user presses the
Stop button. First, we execute the GenICam AcquisitionStop command (lStop). Then, we disable the
stream and stop the worker thread.

Now that streaming has stopped, we mark all of the buffers in the input queue as aborted (using
PvStream.AbortQueuedBuffers), which moves the buffers to the output queue.

If your application does not abort queued buffers, your application will receive timeout errors when you
restart PvStream, since the buffers in the input queue will have exceeded the timeout value.

For GigE Vision devices, StreamDisable resets the TLParamsLocked feature, which allows changes to the
streaming related parameters to occur.

For USB3 Vision devices, StreamDisable resets the TLParamsLocked feature and sets the stream enable
bit on the device.

C#

 // Stop acquisition.
 mDevice.Parameters.ExecuteCommand("AcquisitionStop");

 // Disable streaming after sending the AcquisitionStop command.
 mDevice.StreamDisable();

 // Stop display thread.
 mIsStopping = true;
 mThread.Join();
 mThread = null;

For PvStreamGEV objects, before resuming streaming after a pause, you should flush the queue using
PvStreamGEV.FlushPacketQueue, which removes all unprocessed UDP packets from the data receiver.

While our sample does not necessarily require that we abort and remove the buffers from the queue
(because we do not restart PvStream in this sample), it is included in this sample to illustrate the concept
of clearing buffers.
25Code Walkthrough: Acquiring Images with the eBUS SDK

Finally, we remove all of the buffers from the queue (using PvStream.RetrieveBuffer) so they can be
requeued the next time the stream is enabled.

Step6Disconnecting Method

Step6Disconnecting releases the browser parameter array reference. The stream is closed (if it was
opened) and then the connection to the device is disconnected.

C#

 // Abort all buffers in the stream and dequeue
 mStream.AbortQueuedBuffers();
 for (int i = 0; i < mStream.QueuedBufferCount; i++)
 {
 lResult = mStream.RetrieveBuffer(ref lBuffer, ref lOperationResult);
 if (lResult.IsOK)
 {
 lBuffer = null;
 }
 }
 }
 catch (PvException lExc)
 {
 MessageBox.Show(lExc.Message, Text);
 }
 }

C#

 private void Step6Disconnecting()
 {
 fiveLabel.Enabled = false;
 sixLabel.Enabled = true;

 // Release browser parameters reference.
 browser.GenParameterArray = null;

 if (mStream != null)
 {
 // Close and release stream
 mStream.Close();
 mStream = null;
 }

 if (mDevice != null)
 {
 // Disconnect and release device
 mDevice.Disconnect();
 mDevice = null;
 }
 }
26 eBUS SDK .NET API Quick Start Guide

Chapter 6

Troubleshooting
This chapter provides you with troubleshooting tips and recommended solutions for issues that can occur
when using the eBUS SDK C++ API, GigE Vision, and USB3 Vision devices.

Troubleshooting Tips

The scenarios and known issues listed in this chapter are those that you might encounter during the setup
and operation of your device. Not all possible scenarios and errors are presented. The symptoms, possible
causes, and resolutions depend upon your particular setup and operation.

Not all scenarios and solutions are listed here. You can refer to the Pleora Technologies Support Center at
supportcenter.pleora.com for additional support and assistance. Details for creating a customer account
are available on the Pleora Technologies Support Center.

Refer to the product release notes that are available on the Pleora Technologies Support Center for known
issues and other product features.

If you perform the resolution for your issue and the issue is not corrected, we recommend you review the
other resolutions listed in this table. Some symptoms may be interrelated.
Troubleshooting 27

https://supportcenter.pleora.com/s/

Table 3: Troubleshooting Tips

Symptom Possible cause Resolution

SDK cannot detect or
connect to the Pleora device

Power not supplied to the
device, or inadequate power
supplied

Both the detection and connection to the
device will fail if adequate power is not supplied
to the device.

Verify that the Network LED is active. For
information about the LEDs, see the
documentation accompanying the device.

Re-try the connection to the device with your
application.

The GigE Vision device is not
connected to the network

Verify that the network LED is active. If this LED
is illuminated, check the LEDs on your network
switch to ensure the switch is functioning
properly. If the problem continues, connect the
device directly to the computer to verify its
operation. For information about the LEDs, see
the documentation accompanying the device.

The GigE Vision device and
computer are not on the same
subnet

Images might not appear in your application if
the GigE Vision device and the computer
running your application are not on the same
subnet. Ensure that these devices are on the
same subnet. In addition, ensure that these
devices are connected using valid gateway and
subnet mask information. You can view the IP
address information in the Available Devices
list in your application. A red icon appears
beside the device if there is an invalid IP
configuration.

SDK cannot detect the API or
transmitter

NIC that is receiving and NIC
that is transmitting are on
different subnets

Ensure the transmitting and receiving NICs are
on the same subnet.

Errors appear For GigE Vision devices, the
drivers for your NIC may not be
the latest version

Ensure you have installed the latest drivers
from the manufacturer of your NIC.
28 eBUS SDK C++ API Quick Start Guide

SDK is able to connect, but
no images appear in your
application.

In a multicast GigE Vision
configuration, images appear
on a display monitor
connected to a vDisplay HDI-
Pro External Frame Grabber
but do not appear in your
application.

In a multicast configuration,
the device may not be
configured correctly

Images only appear on the display if you have
configured the device for a multicast network
configuration. The device and all multicast
receivers must have identical values for both
the GevSCDA and GevSCPHostPort features in
the TransportLayerControl section. For more
information, see the documentation
accompanying the device.

In a multicast configuration,
your computer’s firewall may
be blocking your application

Ensure that your application is allowed to
communicate through the firewall.

Anti-virus software or firewalls
blocking transmission

Images might not appear in your application
because of anti-virus software or firewalls on
your network. Disable all virus scanning
software and firewalls, and re-attempt a
connection to the device with your application.

Ensure jumbo packets are
properly configured for the NIC

Enable jumbo packet support for the NIC and
network switch (as required). If the NIC or
network switch does not support jumbo
packets, disable jumbo packets for the
transmitter.

Table 3: Troubleshooting Tips (Continued)

Symptom Possible cause Resolution
29Troubleshooting

Dropped packets: eBUS
Player, NetCommand, or
applications created using
the eBUS SDK

Insufficient computer
performance

The computer being used to receive images
from the device may not perform well enough to
handle the data rate of the image stream. The
GigE Vision driver reduces the amount of
computer resources required to receive images
and is recommended for applications that
require high throughput. Should the application
continue to drop packets even after the
installation of the GigE Vision driver, a
computer with better performance may be
required.

Insufficient NIC performance The NIC being used to receive images from the
GigE Vision device may not perform well enough
to handle the data rate of the image stream. For
example, the bus connecting the NIC to the CPU
may not be fast enough, or certain default
settings on the NIC may not be appropriate for
reception of a high-throughput image stream.
Examples of NIC settings that may need to be
reconfigured include the number of Rx
Descriptors and the maximum size of Ethernet
packets (jumbo packets). Additionally, some
NICs are known to not work well in high-
throughput applications.

For information about maximizing the
performance of your system, see the
Configuring Your Computer and Network
Adapters for Best Performance Application
Note, available on the Pleora Support Center.

Table 3: Troubleshooting Tips (Continued)

Symptom Possible cause Resolution
30 eBUS SDK C++ API Quick Start Guide

Chapter 7

Reference: C++ eBUS SDK and .NET SDK Comparison
This chapter outlines the differences between the C++ version of the eBUS SDK and the C# version.

The following topics are covered in this chapter:

• “Types” on page 32

• “Properties” on page 32

• “Enumeration Types” on page 33

• “Error Management” on page 33

• “Enumerators” on page 35

• “Collections” on page 35

• “Callbacks” on page 36

The eBUS SDK .NET API Help File provides detailed information about the .NET classes available in the
eBUS SDK .NET API. The Help file is available from the Windows Start menu (All Programs > Pleora
Technologies Inc. > eBUS SDK > eBUS SDK .NET API).
Reference: C++ eBUS SDK and .NET SDK Comparison 31

Types

The eBUS SDK types used in C++ are replaced by native .NET types. For example, PvString (which is
used to input and output strings to/from the eBUS SDK) is replaced with a string.

Properties

The Get and Set methods in C++ are replaced by properties in the .NET version of the eBUS SDK. A
property internally defines Get and Set methods but it is only accessed through its property name. This
is because Get and Set methods without properties are not commonly used in .NET.

Exceptions to this rule are the Get and Set methods that require additional parameters (for example,
accessing values in the GenICam node tree). Because these methods cannot be replaced with properties,
they remain the same as their C++ counterparts.

Table 4: .NET Equivalent of eBUS SDK C++ Types

C++ type
Replaced by the following .NET
type

PvString string

int_64 Int64

uint64_t UInt64

int32_t Int32

uint32_t UInt32

int16_t Int16

uint16_t UInt16

uint8_t UInt8

C++

PvSerialPort lPort;
PvUInt32 lSize = lPort.GetRxBufferSize();
lPort.SetRxBufferSize(lSize);

C#

PvSerialPort lPort = new PvSerialPort();
UInt32 lSize = lPort.RxBufferSize;
lPort.RxBufferSize = lSize;
32 eBUS SDK .NET API Quick Start Guide

Enumeration Types

Typed native .NET enumerations (not to be confused with GenICam enumerations) are used to wrap
C++ enumerations. The same underlying C++ values are used when defining the .NET enumerations.

.NET enumerations are different from C++ enumerations in the following ways:

• They throw an exception when you attempt to set them to an unsupported integer value.

• They can be converted to strings and the strings can be parsed and turned into an enumeration
value.

• They can be enumerated in statements, such as foreach statements.

Error Management

The .NET version of the eBUS SDK uses exceptions for error management, whereas the C++ version uses
methods that return error codes. For example, the eBUS SDK uses a void return type and throws a
PvException object when an error occurs, whereas the C++ version returns a PvResult object.

A PvException object contains a Result property, which is the PvResult that the method would have
returned. The ToString and Description members of PvException are adapted to return a string-based
representation of the PvResult containing the error code and description.

The only exception to this rule is streaming methods that manage buffers in the PvStreamBase,
PvPipeline, and PvTransmitterRaw classes. For performance reasons try/catch and exception
management are not used to handle these errors. For these methods, there is no change from the C++
approach — these methods return a PvResult object.

C++ eBUS SDK methods that have a PvResult return value and take a reference to a parameter to return
the true return value, now simply return the return value (or are implemented as properties). A good
example is the GetValue method of the PvGenParameter class.

C++

PvInt64 lValue = 0;
PvResult lResult = lInteger.GetValue(lValue);
if (!lResult.IsOK())
{
 // ...
}

C#

try
{
 Int64 lValue = lInteger.Value;
}
catch (PvException lEx)
{
 // ...
}

33Reference: C++ eBUS SDK and .NET SDK Comparison

C++

PvResult lResult = lDevice.Connect("192.168.138.164");
if (!lResult.IsOK())
{

// ...
}

lResult = lStream.Open("192.168.138.164");
if (!lResult.IsOK())
{

// ...
}

lResult = lPipeline.Start();
if (!lResult.IsOK())
{

// ...
}

C#

try
{
 lDevice.Connect("192.168.138.164");
 lStream.Open("192.168.138.164");
 lPipeline.Start();
}
catch (PvException lEx)
{

// ...
}

34 eBUS SDK .NET API Quick Start Guide

Enumerators

Some eBUS SDK classes are containers for other objects that can be enumerated. .NET interfaces are
implemented for these classes to allow the program to go through all of the objects with a foreach
statement:

• The PvInterface class enumerates PvDeviceInfo objects.

• The PvSystem class enumerates PvInterface objects.

• The PvGenEnum class enumerates PvEnumEntry objects.

• The PvGenParameterArray enumerates PvGenParameter objects.

Collections

The C++ version of the eBUS SDK has collection classes such as PvStringList, PvPropertyList, and
PvParameterList. In .NET, native List templates are used instead, such as List<string>, List<PvProperty>,
and List<PvParameter>.

C# (Without an Enumerator)

UInt32 lCount = lArray.Count;
for (UInt32 i = 0; i < lCount; i++)
{
 PvGenParameter lP =
 lParameterArray.Get(i);
 // …
}

C# (With an Enumerator)

foreach (PvGenParameter lP in lArray)
{
 // ...
}

35Reference: C++ eBUS SDK and .NET SDK Comparison

Callbacks

All C++ eBUS SDK callbacks or virtual methods used as callbacks are implemented in PvDotNet as .NET
events of typed delegates.

Registering to an event is done in .NET using the += operator next to an event. The IntelliSense® feature
of Visual Studio then automatically generates an event handler in the .NET code.

This rule ensures that the callback mechanism is as expected by .NET users. It also leverages the
automated code generation performed by Visual Studio to help developers quickly and effortlessly hook
up events to their own code.

C++

class MyClass : PvDeviceEventSink
{
 void OnLinkDisconnected(PvDevice *aDevice)
 {
 // ...
 }
}

MyClass lMyObject;
lDevice.RegisterEvenSink(&lMyObject);
// ...
lDevice.UnregisterEventSink(&lMyObject);

C#

private void Device_OnLinkDisconnected(PvDevice aDevice)
{
 // ...
}

lDevice.OnLinkDisconnected += new OnLinkDisconnectedEvent(Device_OnLinkDisconnected);
 // ...
lDevice.OnLinkDisconnected -= new OnLinkDisconnectedEvent(Device_OnLinkDisconnected);
36 eBUS SDK .NET API Quick Start Guide

Chapter 8

Technical Support
On the Pleora Support Center, you can:

• Download the latest software and firmware.

• Log a support issue.

• View documentation for current and past releases.

• Browse for solutions to problems other customers have encountered.

• Read knowledge base articles for information about common tasks.

To visit the Pleora Support Center

• Go to supportcenter.pleora.com.

Most material is available without logging in to a Support Center account. To access software and
firmware downloads, in addition to other content, log in to the Support Center. If you do not have
an account, click Request Account.

Accounts are usually validated within one business day.
Technical Support 37

广州虹科电子科技有限公司| 广州市黄埔区科学城神舟路18号润慧科技园C栋6层 | +86 20 37267976 | www.honzhigan.com

https://supportcenter.pleora.com/s/

	What’s New In Version 6.2?
	Enhanced 3D Linescan Support for eBUS Tx-Based Applications Targeting Embedded Devices
	Ubuntu 20.04 LTS (64-bit) Support
	Installation Package Updates
	Microsoft Visual Studio 2019 Support
	eBUS Daemon Removal on Linux Operating System
	Support for Jetpack 4.3

	About this Guide
	What this Guide Provides
	Related Documents

	Introducing the eBUS SDK .NET API
	About the eBUS SDK .NET API
	eBUS SDK Licenses
	eBUS Player, Sample Applications, and Software Applications Created with the eBUS SDK
	GigE Vision Devices Created with the eBUS Tx API
	Activating an eBUS SDK License

	Installing the eBUS SDK
	System Requirements
	Installing the eBUS SDK

	Using the Sample Code
	Overview: System Components
	Description of Samples
	Using H.264 Encoding
	Video Encoder Information

	Code Walkthrough: Acquiring Images with the eBUS SDK
	Accessing the Sample Code
	Required Items

	Classes Used in the PvStreamSample
	Namespaces
	Timer
	FormClosing Event
	Step1Connecting Method
	Step2Configuring Method
	Step3StartingStream Method
	The Worker Thread

	Step5StoppingStream Method
	Step6Disconnecting Method

	Troubleshooting
	Troubleshooting Tips

	Reference: C++ eBUS SDK and .NET SDK Comparison
	Types
	Properties
	Enumeration Types
	Error Management
	Enumerators
	Collections
	Callbacks

	Technical Support

